

mF2C Docs

Welcome to the mF2C documentation!

Introduction

mF2C

The mF2C project brings together relevant industry and academic players in the cloud arena,
aimed at designing an open, secure, decentralized, multi-stakeholder management framework
for F2C computing, including novel programming models, privacy and security, data storage
techniques, service creation, brokerage solutions, SLA policies, and resource orchestration methods

Developer Guide

This is the developer guide

Cloud Agent

The mF2C System will be supported by at least one cloud agent, which is managed by the mF2C consortium, and where the non-distributed
critical software and data administration capabilities will be located.

Requirements

	The mF2C Cloud Agent should have the following mininum hardware requirements:

	
	2GB of RAM

	20GB of disk space

	2 (v)CPU cores

	In terms of software, the cloud agent should sit on a CentOS or Ubuntu VM, and have:

	
	Docker CE 17.12.0+

	Docker Compose 1.18.0+

	Git

Installation

Installing the mF2C System

For Linux only

	download and run the Linux installation script (docker-compose required)

git clone https://github.com/mF2C/mF2C.git
cd mF2C/docker-compose
sudo ./install.sh

To check the status of the mF2C system:

To stop the agent:

Installing a Leader

Prerequisites for the discovery module:

A device with a wireless card that supports “master mode” (i.e. that can act as an access point). You can check whether your card supports master mode by running the following command, looking for the “Supported interface modes”. You should find “AP” in the list (i.e. Master mode) :

sudo iw list

Then, the installation script should be run as follows to start the agent with the “leader” role:

sudo ./install.sh -L

As far as the discovery module is concerned, the installation script grabs the name of the wireless interface to be used. It then makes sure the discovery container is run with the –cap-add=NET_ADMIN, since network admin capabilities are needed to access the wireless interface of the host machine. It also programmatically associates the physical wireless interface to the newly created container. Note that Discovery is attached to the host network.

Prerequisites for the data management module:

This module is responsible for transparently replicating the necessary data from children to their leader so that the leader has a global view of its cluster. This allows the different components in the leader to forget about data transfers and replicas, and access all the data in the cluster as if it was only in the leader.

To achieve this behaviour, you should modify the .env file adding the IP addresses of this leader’s children as follows:

CHILDREN_DC=host1:port1;host2:port2;...;hostn:portn

Installing a regular agent

By default, the installation script will start a normal agent.

sudo ./install.sh

Prerequisites for the data management module:

This module is responsible for transparently replicating the necessary data from children to their leader so that the leader has a global view of its cluster.

To achieve this behaviour, you should modify the .env file adding the IP address of this agent’s leader as follows:

LEADER_DC=host:port

Installing the mF2C Cloud Agent

	install Docker, by following the instructions at https://docs.docker.com/install/

	make sure Docker Compose is also installed (https://docs.docker.com/compose/install/)

	install git:

assuming Ubuntu
apt-get update
apt-get install -y git

	(recommended) use the /opt directory as working directory:

cd /opt

	clone the main mF2C repository:

git clone https://github.com/mF2C/mF2C

	go in and choose the right distribution - docker-compose-cloud

cd mF2C/docker-compose-cloud

	using the version 3 Compose file in this folder, deploy the mF2C cloud agent core engine:

docker-compose -f docker-compose-core.yml -p mf2c up

	note that step 7. will only deploy the core services for mF2C. To deploy the remaining services, make sure to add the proper credentials to .env and run:

docker-compose -f docker-compose-components.yml -p mf2c up

The full installation might take a few minutes, depending on
the user’s local Docker images and network connection

Container Monitoring

To add container monitoring simply run:

docker run --volume=/:/rootfs:ro \
 --volume=/var/run:/var/run:rw \
 --volume=/sys:/sys:ro \
 --volume=/var/lib/docker/:/var/lib/docker:ro \
 --volume=/dev/disk/:/dev/disk:ro \
 --publish=8080:8080 --detach=true \
 --name=cadvisor google/cadvisor:latest

Note that this monitoring page will be publicly available in port 8080.

Updating Components

with docker-compose

If the mF2C agent has been installed with Docker Compose, then to update a single component without
having to re-deploy the full stack, simply run:

docker-compose -f <yml_file> -p mf2c up -d <service_name>

Use of the Certificate Authority server

The Certification Authority (https://github.com/mF2C/certauth) is a JAVA Jersey ReST application deployed on a Tomcat container. It provides 8 different certification CA endpoints. The CAs are independent components that exist independently to the mF2C Agents and fog clusters as well as the CAU middleware. The different CAs provide X.509 certificates to uniquely identify mF2C Agents and infrastructure components within mF2C. The CAU middleware interacts with the unstrusted CA services over HTTPS to request certificates for candidate Agents. Trusted infrastructure components need to obtain a certificate and the associate RSA private key from the appropriate trusted CA service.

The how-to documentation at https://github.com/mF2C/certauth/blob/master/src/main/resources/vanilla-ca-howto.pdf provides detailed information on the list and usage of the certification service endpoints.

Requirements

A host VM with 4GB of memory, 15GB of disk as a minimum and running Centos 7.4 and Docker 18.03.
The VM is hosted on the Tiscali Engineering Openstack.

Domain names and DNS

The DNS name is registered and published by Tiscali Engineering. Contact Antonio for assistance.

Installation requirements and procedures

The server is deployed as a Docker container. Refer to the how-to documentation (https://github.com/mF2C/certauth/blob/master/src/main/resources/vanilla-ca-howto.pdf) on the installation requirements and steps to build and deploy the CA application. Please note that you need to have access to the Engineering box and the items listed in the following section to deploy the application.

CA certificates, private keys and Tomcat scripts

These are available from the ‘CA credentials’ and ‘tomcat’ folders at https://repository.atosresearch.eu/owncloud/index.php/apps/files/?dir=%2FmF2C%2FWorking%20Folders%2FWP5%20PoC%20integration%2FCA

Cau-client component

Description:
This component is a JAVA application. It supports the Agent Discovery and Authentication process. It is triggered by the policy block via TCP-IP to kick off the agent authentication process. It starts by establishing a TLS connection via TCP-IP to the regional CAU to request an Agent certificate. After successfully obtained the signed certificate, it performs a TLS handshake via TCP-IP with the Leader Agent’s CAU to exchange keys to secure future communication.

Installation:
The component is installed by running the mF2C docker-compose.yml.

Configuration:
The cau-client listens on port 46065 for the policy block trigger. This value is fixed for the IT1 demo.
You also need to tell cau-client where the regional CAU and the leader agent CAU are located. This is done by amending the cau-client block in the docker-compose.yml file, providing values to the CAU_URL and LCAU_URL environemnt variables. For example:

	environment:

	
	CAU_URL=10.0.0.129:46400

	LCAU_URL=10.0.0.129:46410

Use of the SLA Management component

The SLA Management is a lightweight implementation of an SLA system, inspired by the WS-Agreement standard. It features (i) a REST interface to manage agreements, (ii) a background agreement assessment.

To make use of the SLA Management on IT-1, you must install an agreement in the system. This agreement will be detected by the GUI when creating a service instance and will be associated to it.

An agreement is represented by a simple JSON structure. Below is the default agreement that you should install. This agreement will check that the service operations are executed in less than one second. Modify the constraint to allow different time threshold.

{
 "name": "*",
 "details":{
 "id": "2018-000234",
 "type": "agreement",
 "name": "*",
 "provider": { "id": "mf2c", "name": "mF2C Platform" },
 "client": { "id": "a-client", "name": "A client" },
 "creation": "2018-01-16T17:09:45Z",
 "expiration": "2020-01-17T17:09:45Z",
 "guarantees": [
 {
 "name": "*",
 "constraint": "[execution_time] < 1000"
 }
]
 }
}

To install the agreement, type the following command, where $CIMI_URL is the URL of the CIMI server in the leader agent.

curl -X POST -d @agreement.json -H"Content-type:application/json" $CIMI_URL/api/agreement

Advance usage

The LifecycleManager is responsible, on a service instance creation, to generate an agreement and to start its assessment.
At the moment, the agreement generation is not available. For this reason, you must install an agreement as explained above, which will be utilized when creating services using the GUI. If you plan to have different SLAs for the different services, an agreement must be manually created on CIMI for each service instance that needs to have an SLA. In this case, you must also modify the fields .name and .details.name of the agreement to match the name of an installed service. Install as many agreements as service kinds you want to observe.

Currently, the assessment only is able to evaluate execution_time metrics, which are retrieved from the service-operation-report
resource. The Distributed Execution Runtime (DER) stores instances of this resource when completing an operation. Any non-DER
service instance can store the appropriate service-operation-report to have its agreement evaluated. For DER service instances,
the guarantee name must match the operation names.

The steps to evaluate an agreement for a service instance are:

	Create an sla-agreement CIMI resource using the excerpt above as template. Add as many guarantees as operations you need to
observe, and set the guarantee name to the COMPSs name of the operation (qualified class name ‘.’ method name). Take note of
the agreement ID auto generated by CIMI.

	Start the service instance through the Lifecycle Manager passing the agreement ID as parameter. The Lifecycle Manager also
starts the agreement assessment. Alternatively, you can manually update the agreement field of an existing service instance
and update the status field to “started” of the corresponding agreement resource.

	Once the service is started, instances of the sla-violation resource are created if any guarantee term is not fulfilled.

Check QoS provider

Before to check the QoS of a specific service, some previous steps are required.

	Submit an Agreement:

 cat >agreement.json <<EOF
 {
 "name": "AGREEMENT 1",
 "state": "started",
 "details":{
 "id": "agreement",
 "type": "agreement",
 "name": "AGREEMENT 1",
 "provider": { "id": "mf2c", "name": "mF2C Platform" },
 "client": { "id": "c02", "name": "A client" },
 "creation": "2018-01-16T17:09:45.01Z",
 "expiration": "2019-01-17T17:09:45.01Z",
 "guarantees": [
 {
 "name": "TestGuarantee",
 "constraint": "execution_time < 10.0"
 }
]
 }
}
 EOF
 curl -XPOST -k https://cimi/api/agreement -d @agreement.json -H "Content-type: application/json" -H 'slipstream-authn-info: super ADMIN'

	Submit a Service Instance specifying the <service-id> and the <agreement-id>:

 cat >service-instance.json <<EOF
 {
 "service" : "service/<service-id>",
 "status" : "not-defined",
 "agreement" : "agreement/<agreement-id>",
 "agents" : [{
 "agent" : {
 "href" : "agent/default-value"
 },
 "allow" : true,
 "ports" : [46100, 46101, 46102, 46103],
 "status" : "not-defined",
 "agent_param" : "not-defined",
 "url" : "192.168.252.41",
 "container_id" : "-",
 "master_compss" : true,
 "num_cpus" : 7
 }],
 "user" : "testuser"
}
 EOF
 curl -XPOST -k https://cimi/api/service-instance -d @service-instance.json -H "Content-type: application/json" -H 'slipstream-authn-info: super ADMIN'

	Submit a Service Operation Report specifying the <service-instance-id>:

 cat >service-operation-report.json <<EOF
 {
 "serviceInstance": {"href": "service-instance/<service-instance-id>"},
 "operation": "TestGuarantee",
 "execution_time": 50.0
}
 EOF
 curl -XPOST -k https://cimi/api/service-operation-report -d @service-operation-report.json -H "Content-type: application/json" -H 'slipstream-authn-info: super ADMIN'

Finally, check the QoS of a service instance specifying the id:

curl -XGET http://service-manager:46200/api/service-management/qos/<service-instance-id>

As a result of the operation, the service instance will be returned.

Testing

Manual Testing

CIMI

(these instructions have not been tested in Windows)

CIMI will be running over HTTPS (through Traefik).
Since this is a development and testing environment, we’ll use a special CIMI HTTP header (slipstream-authn-info:internal ADMIN)
to bypass user authentication and authorization, by impersonating admin.
Let’s also assume that the TLS certificates in-use were self-signed, thus we’ll need -k.
Finally, for creating and modifying resources, the expected payload is always JSON, so we’ll need the HTTP header content-type:application/json).

For simplicity, let’s setup the 4 possible operations in CIMI:

CREATE

alias mf2c-curl-post="curl -XPOST -k -H 'slipstream-authn-info:internal ADMIN' -H 'content-type:application/json' "

READ

alias mf2c-curl-get="curl -XGET -k -H 'slipstream-authn-info:internal ADMIN' "

UPDATE

alias mf2c-curl-put="curl -XPUT -k -H 'slipstream-authn-info:internal ADMIN' -H 'content-type:application/json' "

DELETE

alias mf2c-curl-delete="curl -XDELETE -k -H 'slipstream-authn-info:internal ADMIN' "

Let’s also assume the test CIMI server is running at localhost.

Cloud Entry Point

When CIMI is ready, the cloud-entry-point should be available:

mf2c-curl-read https://localhost/api/cloud-entry-point

Adding a new user

If the SMTP configuration is enabled, you shall receive a user validation email (check the SPAM folder).

curl -XPOST -k -H 'content-type:application/json' https://localhost/api/user -d '''
{
 "userTemplate": {
 "href": "user-template/self-registration",
 "password": "testpassword",
 "passwordRepeat" : "testpassword",
 "emailAddress": "your_email@",
 "username": "testuser"
 }
}'''

Login

You must have validated the user before you can login.
To login, simply create a session.

curl -XPOST -k -H 'content-type:application/json' https://localhost/api/session --cookie-jar ~/cookies -b ~/cookies -d '''
{
 "sessionTemplate": {
 "href": "session-template/internal",
 "username": "testuser",
 "password": "testpassword"
 }
}'''

Get a collection of any resources

To retrieve all the records of a certain resource type, simply do:

mf2c-curl-read https://localhost/api/<resourceName>

where resourceName is something like user, service, device, etc.

Filter a collection of resources

To filter for a specific set of resources, use CIMI’s filtering grammar. Example:

mf2c-curl-read 'https://cimi/api/<resourceName>?$filter=<AttrName>="<Value>"&$filter=<AttrName2><=<Value2>&$orderby=<AttrName3>:desc'

Get a specific resource

To get a specific resource, use its unique ID:

mf2c-curl-read https://localhost/api/<resourceName>/<uuid>

Create a new service

Example with only required fields:

mf2c-curl-post https://localhost/api/service -d '''
{
 "name": "compss-hello-world",
 "exec": "mf2c/compss-test:it2",
 "exec_type": "compss",
 "agent_type": "normal"
}'''

Example with all optional fields:

mf2c-curl-post https://localhost/api/service -d '''
{
 "name": "compss-hello-world",
 "description": "Hello World Service",
 "exec": "mf2c/compss-test:it2",
 "exec_type": "compss",
 "exec_ports": [8080],
 "agent_type": "normal",
 "num_agents": 2,
 "cpu_arch": "x86-64",
 "os": "linux",
 "memory_min": 1000,
 "storage_min": 100,
 "disk": 100,
 "req_resource": ["Location"],
 "opt_resource": ["SenseHat"]
}'''

Create a service instance

mf2c-curl-post https://localhost/api/service-instance -d '''
{
 "user": "testuser",
 "device_id": "3dfe332d-dbd6-49c0-9788-56457a6d781b",
 "device_ip": "192.169.1.41",
 "parent_device_id": "11fe332d-dbd6-49c0-9788-56457a6d78cc",
 "parent_device_ip": "192.169.252.42",
 "service": "a5fe332d-dbd6-4ff0-9788-56457a6d7813",
 "agreement": "15fe311d-dbd6-4ff0-9711-56457a6d7819",
 "status": "waiting",
 "service_type": "swarm",
 "agents": [
 {"compss_app_id": "523242342121", "url": "192.168.1.41", "ports": [8081], "container_id": "10asd673f", "status": "waiting",
 "device_id": "3dfe332d-dbd6-49c0-9788-56457a6d781b", "allow": true, "master_compss": true, "app_type": "swarm"},
 {"compss_app_id": "", "url": "192.168.1.42", "ports": [8081], "container_id": "99asd673f", "status": "waiting",
 "device_id": "3dfe332d-d556-49c0-9788-56457a6d7889", "allow": true, "master_compss": false, "app_type": "swarm"}
]
}'''

Create a “sharing-model” record

mf2c-curl-post https://localhost/api/sharing-model -d '''
{
 "user_id": "user/testuser2",
 "device_id": "device/c749fcbb-651d-4ae6-877a-125e372398a4",
 "gps_allowed": false,
 "max_cpu_usage": 3,
 "max_memory_usage": 3,
 "max_storage_usage": 3,
 "max_bandwidth_usage": 3,
 "battery_limit": 50
}'''

Create a user profile

mf2c-curl-post https://localhost/api/user-profile -d '''
{
 "user_id": "user/testuser2",
 "device_id": "device/c749fcbb-651d-4ae6-877a-125e372398a4",
 "service_consumer": true,
 "resource_contributor": true,
 "max_apps": 1
}'''

Create an service level agreement

mf2c-curl-post https://localhost/api/agreement -d '''
{
 "id": "a02",
 "name": "Agreement 02",
 "state": "stopped",
 "details":{
 "id": "a02",
 "type": "agreement",
 "name": "Agreement 02",
 "provider": { "id": "mf2c", "name": "mF2C Platform" },
 "client": { "id": "c02", "name": "A client" },
 "creation": "2018-01-16T17:09:45.0Z",
 "expiration": "2019-01-17T17:09:45.0Z",
 "guarantees": [
 {
 "name": "TestGuarantee",
 "constraint": "[test_value] < 10"
 }
]
 }
}'''

Create an SLA violation

mf2c-curl-post https://localhost/api/sla-violation -d '''
{
 "guarantee" : "TestGuarantee",
 "datetime" : "2018-04-11T10:39:51.527008088Z",
 "agreement_id" : {"href": "agreement/4e529393-f659-44d6-9c8b-b0589132599b"},
 "constraint": "var1 < 100 and var2 > 100",
 "values": { "var1": 101, "var2": 100 }
}'''

Add a new device

mf2c-curl-post https://localhost/api/device -d '''
{
"deviceID": "fd97ac4cf865e108c143c57428f742022f38653f1f4c4166938a3154d7b5818967fd27dae6422a2b1da1ceb8dc9d25f3585ab7b4039c96b5d9ad43acb7dce0ff",
"isLeader": false,
"os": "Linux-4.15.0-45-generic-x86_64-with-debian-9.7",
"arch": "x86_64",
"cpuManufacturer": "Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz",
"physicalCores": 4,
"logicalCores": 8,
"cpuClockSpeed": "1.8000 GHz",
"memory": 7873.7734375,
"storage": 195865.0234375,
"agentType": "Fog agent",
"networkingStandards": "['eth0', 'lo']",
"hwloc": "/bin/sh: 1: hwloc-ls: not found\n",
"cpuinfo": "xml info CPU"
}'''

Add the device-dynamic info

mf2c-curl-post https://localhost/api/device-dynamic -d '''
{
 "device": {"href": "device/f14de9c3-9221-4f51-84bf-b3836bad601a"},
 "ramFree": 3060.19140625,
 "ramFreePercent": 38.9,
 "storageFree": 168181.26171875,
 "storageFreePercent": 90.5,
 "cpuFreePercent": 79.5,
 "powerRemainingStatus": "39.74431818181818",
 "powerRemainingStatusSeconds": "BatteryTime.POWER_TIME_UNLIMITED",
 "powerPlugged": true,
 "ethernetAddress": "[snicaddr(family=<AddressFamily.AF_INET: 2>, address='172.18.0.14', netmask='255.255.0.0', broadcast='172.18.255.255', ptp=None), snicaddr(family=<AddressFamily.AF_PACKET: 17>, address='02:42:ac:12:00:0e', netmask=None, broadcast='ff:ff:ff:ff:ff:ff', ptp=None)]",
 "wifiAddress": "Empty",
 "ethernetThroughputInfo": ["13178", "8956", "18", "68", "0", "0", "0", "0"],
 "wifiThroughputInfo": ["E", "m", "p", "t", "y"],
 "actuatorInfo": "Please check your actuator connection",
 "sensors": [{"sensorType": "Temperature", "sensorModel": "DHT22", "sensorConnection": "{\"baudRate\": 5600}"}]
}'''

Create a fog area

mf2c-curl-post https://localhost/api/fog-area -d '''
{
 "leaderDevice": {"href": "device/123refegh"},
 "numDevices": 10,
 "ramTotal": 56789.90,
 "ramMax": 4569.34,
 "ramMin": 1478.34,
 "storageTotal": 120003456798.23456,
 "storageMax": 345678000.23456,
 "storageMin": 3456789.248,
 "avgProcessingCapacityPercent": 88.6,
 "cpuMaxPercent": 98.2,
 "cpuMinPercent": 56.7,
 "avgPhysicalCores": 4,
 "physicalCoresMax": 6,
 "physicalCoresMin": 2,
 "avgLogicalCores" : 4,
 "logicalCoresMax": 6,
 "logicalCoresMin": 2,
 "powerRemainingMax": "Device has unlimited power source",
 "powerRemainingMin": "88.2"
}'''

Add the service operation report

mf2c-curl-post https://localhost/api/service-operation-report -d '''
{
 "serviceInstance": {"href": "service-instance/asasdasd"},
 "operation": "newMethod",
 "execution_time": 123.32
}'''

Credentials (API)

This section describes how to create new users, sessions, and API keys, all through the CIMI API.

Note: remeber to use -k in all API requests below, if you are working with a test deployment without a green server certificate.

Create a user

Once the mF2C system is up and running,

	create a new user by doing:

curl -XPOST -H "Content-type: application/json" \
 https://<server>/api/user -d @addRegularUser.json

where addRegularUser.json is

{
 "userTemplate": {
 "href": "user-template/self-registration",
 "password": "testpassword",
 "passwordRepeat" : "testpassword",
 "emailAddress": "your@email.com",
 "username": "testuser"
 }
}

2. check your email for a user validation email (if working with a test deployment of mF2C, check the Spam folder). Once you find the
email, copy the validation URL and paste it in the browser, looking like this “https://<server>/api/callback/a3a9b6d9-5229-455a-b31b-87fa2b950159/execute”

	once the user is validated, you can create a session and login:

curl -XPOST -H 'content-type: application/json' \
 https://<server>/api/session -d @regularUser.json \
 --cookie-jar ~/cookies -b ~/cookies -sS

where regularUser.json is

{
 "sessionTemplate": {
 "href": "session-template/internal",
 "username": "testuser",
 "password": "testpassword"
 }
}

note that ~/cookie expire by default after 1 day.

You are now logged in.

Generate an API key for a user

API keys are a safer way to have robots (scripts) interacting with the API on behalf of a user,
since the same user can issue multiple API keys, and every one of them can be revoked without
interfering with the original user access.

Basically CIMI distinguishes between internal logins and api_key logins,
even though they might be associated with the same user account.

Before using API keys, create the session-template for it (only do it once, and if it doesn’t exist yet):

curl -XPOST -H content-type:application/json -d '
 {
 "method": "api-key",
 "instance": "api-key",

 "name" : "Login with API Key and Secret",
 "description" : "Authentication with API Key and Secret",
 "group" : "Login with API Key and Secret",

 "key" : "key",
 "secret" : "secret",

 "acl": {
 "owner": {"principal": "ADMIN",
 "type": "ROLE"},
 "rules": [{"principal": "ADMIN",
 "type": "ROLE",
 "right": "ALL"},
 {"principal": "ANON",
 "type": "ROLE",
 "right": "VIEW"},
 {"principal": "USER",
 "type": "ROLE",
 "right": "VIEW"}]
 }
}' https://<server>/api/session-template -H 'slipstream-authn-info: super ADMIN'

Then, to create an API key, do the following:

	login (like demonstrated in step 3. of the previous section)

curl -XPOST -H 'content-type: application/json' \
 https://<server>/api/session -d @regularUser.json \
 --cookie-jar ~/cookies -b ~/cookies -sS

	generate an API key and secret

curl -XPOST -H 'content-type: application/json' \
 https://localhost/api/credential -d @generateAPIKey.json \
 --cookie-jar ~/cookies -b ~/cookies -sS

where generateAPIKey.json is something like

{
 "credentialTemplate": {
 "href": "credential-template/generate-api-key",
 "ttl": 0
 }
}

	you’ll get a server response similar to

{
 "status" : 201,
 "message" : "credential/4f8b8f66-2e15-4570-a14e-f9d3582425ad created",
 "resource-id" : "credential/4f8b8f66-2e15-4570-a14e-f9d3582425ad",
 "secretKey" : "nehrHa.V9Ppzb.vHf4BG.5vxv3j.DzLtqb"
}

	save the “resource-id” and “secretKey”

export CIMI_API_KEY=credential/4f8b8f66-2e15-4570-a14e-f9d3582425ad
export CIMI_API_SECRET=nehrHa.V9Ppzb.vHf4BG.5vxv3j.DzLtqb

	create another session login, with regularUserAPIKey.json:

cat >regularUserAPIKey.json <<EOF
{
 "sessionTemplate": {
 "href": "session-template/api-key",
 "key": "$CIMI_API_KEY",
 "secret": "$CIMI_API_SECRET"
 }
}
EOF

curl -XPOST -H 'content-type: application/json' \
https://<server>/api/session -d @regularUserAPIKey.json \
--cookie-jar ~/cookies -b ~/cookies -sS

And now you are logged in using an API key and secret instead of your internal user credentials.

Index

API

The mF2C system is equipped with a RESTful (HTTP) API for the management of infrastructure resources.
This API is based on the Cloud Infrastructure Management Interface (CIMI [https://www.dmtf.org/sites/default/files/standards/documents/DSP0263_2.0.0.pdf]) specification from DMTF.

The CIMI standard defined patterns for all the usual database actions: Search (or Query), Create, Read, Update, and Delete (SCRUD).

	Action

	HTTP Method

	Target

	Search

	GET or PUT

	resource collection

	Add (create)

	POST

	resource collection

	Read

	GET

	resource

	Edit (update)

	PUT

	resource

	Delete

	DELETE

	resource

The mF2C API implementation has been adopted from the open source implementation used in SlipStream [http://ssapi.sixsq.com/#cimi-api].

At the moment of writing this documentation, other mF2C RESTful APIs are also being exposed to the users,
to facilitate the ongoing developments.

CIMI

CIMI in the entry point for all users and internal components to interact with the mF2C system resources.
For the sake of simplicity, let’s assume CIMI is running at https://cimi.

Entry Point

To allow the self-discovery of the existing system resources and allowed operations and requests, CIMI
provides a public entry-point at https://cimi/api/cloud-entry-point.

Create a user

	create a regular user testuser with password testpassword

cat >addRegularUser.json <<EOF
{
 "userTemplate": {
 "href": "user-template/self-registration",
 "password": "testpassword",
 "passwordRepeat" : "testpassword",
 "emailAddress": "your_email@",
 "username": "testuser"
 }
}
EOF
curl -XPOST -k -H "Content-type: application/json" https://cimi/api/user -d @addRegularUser.json

	an email will be sent to you (if running in test mode, then you might have to check your SPAM folder). Copy the API address in that email, and paste it in your browser. Ex: https://cimi/api/CALLBACK_ENDPOINT.

	login as testuser

cat >regularUser.json <<EOF
{
 "sessionTemplate": {
 "href": "session-template/internal",
 "username": "testuser",
 "password": "testpassword"
 }
}
EOF
curl -XPOST https://cimi/api/session -d @regularUser.json -H 'content-type: application/json' --cookie-jar ~/cookies -b ~/cookies -sS # use -k if running in test mode

Get an existing resource collection

Let’s say we want to get a list of all the events registered in the database (the ones we have access to, and assuming the CIMI resource events exists):

curl -XGET https://cimi/api/event --cookie-jar ~/cookies -b ~/cookies -sS

Filter for a specific dataset

CIMI provides mechanisms to search for data based on a filter. To provided grammar looks like the following:

note that <***> must be replaced
curl -XGET 'https://cimi/api/event?$filter=<AttrName>="<Value>"&$filter=<AttrName2><=<Value2>&$orderby=<AttrName3>:desc' --cookie-jar ~/cookies -b ~/cookies -sS

Delete a specific resource

Let’s delete our own session:

curl -XDELETE https://cimi/api/session/<SessionID> --cookie-jar ~/cookies -b ~/cookies -sS

Service Manager

The Service Manager is an internal component of the mF2C system that will not be exposed. However, in the current development state and for testing purposes, it is accessible through http://service-manager:46200.

Service registration

For any workflow to work, the first step is to submit a service to the service manager:

cat >service.json <<EOF
{
 "name": "hello-world",
 "description": "Hello World Service",
 "resourceURI": "/hello-world",
 "exec": "hello-world",
 "exec_type": "docker",
 "exec_ports": [8080, 8081],
 "category": {
 "cpu": "low",
 "memory": "low",
 "storage": "low",
 "disk": "low",
 "network": "low",
 "inclinometer": false,
 "temperature": false,
 "jammer": false,
 "location": false,
 "battery_level": true,
 "door_sensor": true,
 "pump_sensor": true,
 "accelerometer": true,
 "humidity": true,
 "air_pressure": true,
 "ir_motion": true
 }
 }
EOF
curl -XPOST -k http://service-manager:46200/api/service-management/categorizer -d @service.json -H "Content-type: application/json"

Lifecycle Management module

The Lifecycle Management component is part of the Platform Manager’s Service Orchestration module. It is an internal component responsible for managing the services running in the mF2C clusters. For IT-2 this component will be accessible through http://lifecycle:46000/api/v2.

Services are based on docker images. Thus, when a service is deployed in one or more agents, the lifecycle creates a docker container in each of them.

Deploy and start a service

The lifecycle offers different ways for deploying and starting a service in a set of mF2C agents.

	If the lifecycle is working together with the other mF2C components, then the call should contain only two parameters: the service identifier, and the SLA template identifier.

cat >post_service1.json <<EOF
{
 "service_id": "service/6d1ba52b-4ce7-4333-914f-e434ddeeb591",
 "sla_template": "sla_template/a7a30e2b-2ba1-4370-a1d4-af85c30d8713"
}
EOF
curl -H "Content-Type: application/json" -X POST https://lifecycle:46000/api/v2/lm/service -d @post_service1.json --insecure

	If the user wants to specify the agents where the service will be deployed, then we need another parameter: a list of agents

cat >post_service2.json <<EOF
{
 "service_id": "service/6d1ba52b-4ce7-4333-914f-e434ddeeb591",
 "sla_template": "sla_template/a7a30e2b-2ba1-4370-a1d4-af85c30d8713",
 "agents_list": [{"agent_ip": "192.168.252.41"}, {"agent_ip": "192.168.252.42"}]
}
EOF
curl -H "Content-Type: application/json" -X POST https://lifecycle:46000/api/v2/lm/service -d @post_service2.json --insecure

	Finally, if the user wants to specify the service to be deployed, then we need to include the service content in the call to the lifecycle:

cat >post_service3.json <<EOF
{
"service": {
 "name": "nginx",
 "description": "nginx server",
 "exec": "nginx",
 "sla_templates": ["sla-template/083e1759-4b66-4295-b187-37997feec013"],
 "os": "linux",
 "disk": 100,
 "category": 0,
 "num_agents": 1,
 "exec_type": "docker",
 "exec_ports": [80],
 "agent_type": "normal",
 "cpu_arch": "x86-64",
 "memory_min": 1000,
 "storage_min": 100,
 "req_resource": [],
 "opt_resource": []
 },
"sla_template": "sla_template/a7a30e2b-2ba1-4370-a1d4-af85c30d8713",
"agents_list": [{"agent_ip": "192.168.252.41"}, {"agent_ip": "192.168.252.42"}]
}
EOF
curl -H "Content-Type: application/json" -X POST https://lifecycle:46000/api/v2/lm/service -d @post_service3.json --insecure

If the service is successfully deployed, then the response should contain the resulting service instance object:

{
 "service_instance": {
 "updated": "2018-05-08T10:00:58.397607Z",
 "agents": [
 {
 "port": 46100,
 "allow": true,
 "container_id": "fc6ecf2060c1a648d9376dab995543434f7b344bfcae9c178e02bde90d213777",
 "status": "started",
 "agent": {
 "href": "agent/default-value"
 },
 "url": "192.168.252.41",
 "master_compss": true,
 "num_cpus": 7
 },
 {
 "port": 46100,
 "allow": true,
 "container_id": "7d7acb04e1389c3a7242db40c005555c54340c7fce6a96647664ae7dd4659087",
 "status": "started",
 "agent": {
 "href": "agent/default-value"
 },
 "url": "192.168.252.42",
 "num_cpus": 7
 }
],
 "user": "user",
 "resourceURI": "http://schemas.dmtf.org/cimi/2/ServiceInstance",
 "acl": {
 "owner": {
 "type": "ROLE",
 "principal": "user"
 },
 "rules": [
 {
 "type": "ROLE",
 "right": "ALL",
 "principal": "user"
 },
 {
 "type": "ROLE",
 "right": "ALL",
 "principal": "ANON"
 }
]
 },
 "id": "service-instance/2f6da0d0-e1e9-44fb-b03f-4259ce55a8f7",
 "agreement": "not-defined",
 "operations": [
 {
 "rel": "edit",
 "href": "service-instance/2f6da0d0-e1e9-44fb-b03f-4259ce55a8f7"
 },
 {
 "rel": "delete",
 "href": "service-instance/2f6da0d0-e1e9-44fb-b03f-4259ce55a8f7"
 }
],
 "status": "started",
 "created": "2018-05-08T10:00:34.387Z",
 "service": "app_compss_test_01"
 },
 "message": "Deploy service",
 "error": false
}

Stop and start a service instance

	The service instance can be stopped with the following command:

cat >put_stop_service_instance.json <<EOF
{
 "operation":"stop"
}
EOF
curl -H "Content-Type: application/json" -X PUT https://lifecycle:46000/api/v2/lm/service-instance/2f6da0d0-e1e9-44fb-b03f-4259ce55a8f7 -d @put_stop_service_instance.json --insecure

	And it can be restarted again with the following command:

cat >put_start_service_instance.json <<EOF
{
 "operation":"start"
}
EOF
curl -H "Content-Type: application/json" -X PUT https://lifecycle:46000/api/v2/lm/service-instance/2f6da0d0-e1e9-44fb-b03f-4259ce55a8f7 -d @put_start_service_instance.json --insecure

Sart a job (COMPSs services)

Services based on COMPSs can also run specific jobs in the mF2C agents. The lifecycle calls the COMPSs master, and this master distributes the job in the different worker agents.

	Start a job:

cat >put_start_job.json <<EOF
{
 "operation":"start-job",
 "ceiClass":"es.bsc.compss.agent.test.TestItf",
 "className":"es.bsc.compss.agent.test.Test",
 "hasResult":false,
 "methodName":"main",
 "parameters":" <params paramId=\"0\"> <direction>IN</direction> <stream>UNSPECIFIED</stream> <type>OBJECT_T</type> <array paramId=\"0\"> <componentClassname>java.lang.String</componentClassname> <values> <element paramId=\"0\"> <className>java.lang.String</className> <value xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xmlns:xs=\"http://www.w3.org/2001/XMLSchema\" xsi:type=\"xs:string\">3</value> </element> </values> </array> </params>"
 }
EOF
curl -H "Content-Type: application/json" -X PUT https://lifecycle:46000/api/v2/lm/service-instance/2f6da0d0-e1e9-44fb-b03f-4259ce55a8f7/compss -d @put_start_job.json --insecure

Terminate a service instance

The call to terminate a service instance, stops and removes the service instance (docker containers) from the agents.

	Terminate a service instance:

curl -H "Content-Type: application/json" -X DELETE https://lifecycle:46000/api/v2/lm/service-instance/2f6da0d0-e1e9-44fb-b03f-4259ce55a8f7 --insecure

Get service instances

	To get all service instances:

curl https://lifecycle:46000/api/v2/lm/service-instance/all --insecure

	To get a specific service instance:

curl https://lifecycle:46000/api/v2/lm/service-instance/4e1ab919-7a02-4260-993a-e0f5382ea580 --insecure

Landscaper module

The Landscaper component is part of the Platform Manager’s Service Orchestration module.
It constructs a graph model of the computing infrastructure. The graph details what service are running on what virtual infrastructure, and on which physical hosts that virtual infrastructure is running on.
For IT-1, the landscaper is accessible through *http://localhost:46020/

Get full graph of system

This method returns the entire graph of all infrastructure, containers and services currently deployed. It can be used to get a dump from the database

curl -X GET https://localhost:46020/graph

Get full graph of system

This method returns the entire graph of all infrastructure, containers and services currently deployed. It can be used to get a dump from the database

curl -X GET https://localhost:46020/graph

Get a service stack’s subgraph

This method returns a subgraph from the model of all nodes involved in the running of this service. It starts with the service node (as input parameter) and works down through the entire structure of the graph

curl -X GET https://localhost:46020/subgraph/<service_id>

Add GeoLocation info to nodes

Stores the geo-location as tags to selected nodes in the database. Useful to track static edge compute locations. Takes in an array of node Id’s and geo locations

User Guide

This is the user guide

Sensor Manager

The mF2C Sensor Manager provides the ability for applications to subscribe to sensor data.
Multiple applications can subscribe to data from the same sensor, as this provides an
abstraction over the actual hardware interaction with sensor drivers and only requires
a subscription to a stream of values.

Drivers are automatically spawned according to the sensors idenfified by resource
categorisation and present in device-dynamic. The mapping between sensor hardware
and sensor drivers is defined in the sensor manager repository.

Creating and building a sensor driver

Sensor drivers are distributed as Docker images that read sensor data and publish it back
to the sensor manager. The interface is language-agnostic. An example sensor driver written
in golang is included in the sensor driver repository and published as a Docker image.

The following environment variables are passed to the sensor driver application:

SENSOR_MANAGER_HOST=<host>
SENSOR_MANAGER_PORT=<port>
SENSOR_MANAGER_PATH_SUFFIX=[path suffix]
SENSOR_MANAGER_USERNAME=<username>
SENSOR_MANAGER_PASSWORD=<password>
SENSOR_MANAGER_TOPIC=<topic>
SENSOR_CONNECTION_INFO=<json>

SENSOR_MANAGER_HOST and _PORT define the location of the endpoint the sensor manager
is listening for values at. The endpoint is a WebSocket-based MQTT server. It may be running
behind a reverse proxy which rewrites its address, so _PATH_SUFFIX is provided, or is empty,
for any changes to the HTTP URL path, applied as a suffix.

_USERNAME and _PASSWORD are MQTT connection credentials for your sensor driver. Publish
values to the topic specified in _TOPIC. Any custom physical sensor connection information
is available as a JSON object in SENSOR_CONNECTION_INFO.

Outgoing values must be JSON objects conforming to the following schema:

{
 "SensorId": "string, an ID that differentiates this piece of hardware sensor from others",
 "SensorType": "string, the type of the sensor (hardware)",
 "Quantity": "string, the SI dimension, e.g. humidity",
 "Timestamp": "string, RFC 3339, when the measurement was taken",
 "Value": "float, the measurement value",
 "Unit": "string, the SI base unit of the value"
}

The resulting application must be packaged as a Docker image accessible to the machine on
which it will be deployed.

As a final step, add the sensor driver information to sensor-container-map.json present in
the sensor manager repository.

Deploying the sensor manager

Sensor manager and related images are hosted on Docker Hub under:

	mf2c/sensor-manager

	mf2c/sensor-manager-mosquitto

	mf2c/sensor-manager-example-driver

	mf2c/sensor-manager-example-application

The sensor manager repository includes a script (deploy-mf2c.sh) that deploys the sensor manager
onto mF2C as an optional add-on.

Usage: sh deploy-mf2c.sh <mf2c-ip>

Component configuration is customisable and described in the repository’s docker-compose.yml.

Reading sensor values

A client application reads sensor data by subscribing to an MQTT topic with credentials obtained
from the sensor manager’s API. An example application written in golang is included in the
sensor-manager repository.

There is only one external API endpoint: /topics. Hosted behind the default reverse proxy,
this is translated to /sensor-manager/api/topics. This endpoint returns a JSON list of topics
that are currently served by the sensor manager.

The client application connects to the sensor manager’s WebSocket-based MQTT server on the
corresponding topic with the specified credentials and begins reading the data. By default, the
server is behind a reverse proxy and its path changed to /sensor-manager/stream/.

Values returned by the stream are in the following format:

{
 "Timestamp": "string, RFC 3339, when the measurement was taken",
 "Value": "float, the measurement value",
 "Unit": "string, the SI base unit of the value"
}

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 mF2C Docs

_static/ajax-loader.gif

