MmF2C Documentation
Release 1.0 (2018-03-21)

mF2C

Sep 30, 2019

Contents

1 Introduction 3
LT mF2C . . . e e e 3
2 Developer Guide 5
2.1 Cloud AZent o v i e e e e e e e e e e e e e 5
2.2 Installation L. e e e e e e e e e e e e e e e 5
23 Testing e e e e 11
2.4 Credentials (APL) e e e e 17

mF2C Documentation, Release 1.0 (2018-03-21)

Welcome to the mF2C documentation!

Contents 1

mF2C Documentation, Release 1.0 (2018-03-21)

2 Contents

CHAPTER 1

Introduction

1.1 mF2C

The mF2C project brings together relevant industry and academic players in the cloud arena, aimed at designing an
open, secure, decentralized, multi-stakeholder management framework for F2C computing, including novel program-
ming models, privacy and security, data storage techniques, service creation, brokerage solutions, SLA policies, and
resource orchestration methods

mF2C Documentation, Release 1.0 (2018-03-21)

4 Chapter 1. Introduction

CHAPTER 2

Developer Guide

This is the developer guide

2.1 Cloud Agent

The mF2C System will be supported by at least one cloud agent, which is managed by the mF2C consortium, and

where the non-distributed critical software and data administration capabilities will be located.

2.1.1 Requirements

The mF2C Cloud Agent should have the following mininum hardware requirements:
¢ 2GB of RAM
* 20GB of disk space
e 2 (v)CPU cores
In terms of software, the cloud agent should sit on a CentOS or Ubuntu VM, and have:
* Docker CE 17.12.0+
* Docker Compose 1.18.0+
e Git

2.2 Installation

2.2.1 Installing the mF2C System

For Linux only

1. download and run the Linux installation script (docker-compose required)

mF2C Documentation, Release 1.0 (2018-03-21)

git clone https://github.com/mF2C/mF2C.git
cd mF2C/docker—compose
sudo ./install.sh

To check the status of the mF2C system:

To stop the agent:

Installing a Leader

Prerequisites for the discovery module:

A device with a wireless card that supports “master mode” (i.e. that can act as an access point). You can check
whether your card supports master mode by running the following command, looking for the “Supported interface
modes”. You should find “AP” in the list (i.e. Master mode) :

’sudo iw list

Then, the installation script should be run as follows to start the agent with the “leader” role:

’sudo ./install.sh -L

As far as the discovery module is concerned, the installation script grabs the name of the wireless interface to be used.
It then makes sure the discovery container is run with the —cap-add=NET_ADMIN, since network admin capabilities
are needed to access the wireless interface of the host machine. It also programmatically associates the physical
wireless interface to the newly created container. Note that Discovery is attached to the host network.

Prerequisites for the data management module:

This module is responsible for transparently replicating the necessary data from children to their leader so that the
leader has a global view of its cluster. This allows the different components in the leader to forget about data transfers
and replicas, and access all the data in the cluster as if it was only in the leader.

To achieve this behaviour, you should modify the .env file adding the IP addresses of this leader’s children as follows:

CHILDREN_DC=hostl:portl;host2:port2;...;hostn:portn

Installing a regular agent

By default, the installation script will start a normal agent.

sudo ./install.sh

Prerequisites for the data management module:

This module is responsible for transparently replicating the necessary data from children to their leader so that the
leader has a global view of its cluster.

To achieve this behaviour, you should modify the .env file adding the IP address of this agent’s leader as follows:

LEADER_DC=host:port

2.2.2 Installing the mF2C Cloud Agent

1. install Docker, by following the instructions at https://docs.docker.com/install/

6 Chapter 2. Developer Guide

https://docs.docker.com/install/

mF2C Documentation, Release 1.0 (2018-03-21)

2. make sure Docker Compose is also installed (https://docs.docker.com/compose/install/)

3. install git:

assuming Ubuntu
apt—-get update
apt—-get install -y git

4. (recommended) use the /opt directory as working directory:

’cd /opt ‘

5. clone the main mF2C repository:

’git clone https://github.com/mF2C/mF2C ‘

6. go in and choose the right distribution - docker-compose-cloud

’cd mF2C/docker-compose—-cloud ‘

7. using the version 3 Compose file in this folder, deploy the mF2C cloud agent core engine:

’dockerfcompose —f docker-compose-core.yml —-p mf2c up ‘

8. note that step 7. will only deploy the core services for mF2C. To deploy the remaining services, make sure to
add the proper credentials to .env and run:

’docker—compose —f docker-compose—-components.yml —-p mf2c up ‘

The full installation might take a few minutes, depending on the user’s local Docker images and network connection

Container Monitoring

To add container monitoring simply run:

docker run —--volume=/:/rootfs:ro \
——volume=/var/run:/var/run:rw \
——volume=/sys:/sys:ro \
—-volume=/var/lib/docker/:/var/lib/docker:ro \
——volume=/dev/disk/:/dev/disk:ro \
——publish=8080:8080 ——-detach=true \
—-name=cadvisor google/cadvisor:latest

Note that this monitoring page will be publicly available in port 8080.

2.2.3 Updating Components

with docker-compose

If the mF2C agent has been installed with Docker Compose, then to update a single component without having to
re-deploy the full stack, simply run:

docker-compose -f <yml_file> —-p mf2c up -d <service_name>

2.2. Installation 7

https://docs.docker.com/compose/install/

mF2C Documentation, Release 1.0 (2018-03-21)

2.2.4 Use of the Certificate Authority server

The Certification Authority (https://github.com/mF2C/certauth) is a JAVA Jersey ReST application deployed on a
Tomcat container. It provides 8 different certification CA endpoints. The CAs are independent components that exist
independently to the mF2C Agents and fog clusters as well as the CAU middleware. The different CAs provide X.509
certificates to uniquely identify mF2C Agents and infrastructure components within mF2C. The CAU middleware in-
teracts with the unstrusted CA services over HTTPS to request certificates for candidate Agents. Trusted infrastructure
components need to obtain a certificate and the associate RSA private key from the appropriate trusted CA service.

The how-to documentation at https://github.com/mF2C/certauth/blob/master/src/main/resources/vanilla-ca-howto.pdf
provides detailed information on the list and usage of the certification service endpoints.

Requirements

A host VM with 4GB of memory, 15GB of disk as a minimum and running Centos 7.4 and Docker 18.03. The VM is
hosted on the Tiscali Engineering Openstack.

Domain names and DNS

The DNS name is registered and published by Tiscali Engineering. Contact Antonio for assistance.

Installation requirements and procedures

The server is deployed as a Docker container. Refer to the how-to documentation (https://github.com/mF2C/certauth/
blob/master/src/main/resources/vanilla-ca-howto.pdf) on the installation requirements and steps to build and deploy
the CA application. Please note that you need to have access to the Engineering box and the items listed in the
following section to deploy the application.

CA certificates, private keys and Tomcat scripts

These are available from the ‘CA credentials’ and ‘tomcat’ folders at https://repository.atosresearch.eu/owncloud/
index.php/apps/files/?dir=%2FmF2C%2FWorking%20Folders %02FWP5%20PoC%?20integration%2FCA

Cau-client component

Description: This component is a JAVA application. It supports the Agent Discovery and Authentication process. It is
triggered by the policy block via TCP-IP to kick off the agent authentication process. It starts by establishing a TLS
connection via TCP-IP to the regional CAU to request an Agent certificate. After successfully obtained the signed
certificate, it performs a TLS handshake via TCP-IP with the Leader Agent’s CAU to exchange keys to secure future
communication.

Installation: The component is installed by running the mF2C docker-compose.yml.

Configuration: The cau-client listens on port 46065 for the policy block trigger. This value is fixed for the IT1 demo.
You also need to tell cau-client where the regional CAU and the leader agent CAU are located. This is done by
amending the cau-client block in the docker-compose.yml file, providing values to the CAU_URL and LCAU_URL
environemnt variables. For example:

environment:
e CAU_URL=10.0.0.129:46400
e LCAU_URL=10.0.0.129:46410

8 Chapter 2. Developer Guide

https://github.com/mF2C/certauth
https://github.com/mF2C/certauth/blob/master/src/main/resources/vanilla-ca-howto.pdf
https://github.com/mF2C/certauth/blob/master/src/main/resources/vanilla-ca-howto.pdf
https://github.com/mF2C/certauth/blob/master/src/main/resources/vanilla-ca-howto.pdf
https://repository.atosresearch.eu/owncloud/index.php/apps/files/?dir=%2FmF2C%2FWorking%20Folders%2FWP5%20PoC%20integration%2FCA
https://repository.atosresearch.eu/owncloud/index.php/apps/files/?dir=%2FmF2C%2FWorking%20Folders%2FWP5%20PoC%20integration%2FCA

mF2C Documentation, Release 1.0 (2018-03-21)

2.2.5 Use of the SLA Management component

The SLA Management is a lightweight implementation of an SLA system, inspired by the WS-Agreement standard.
It features (i) a REST interface to manage agreements, (ii) a background agreement assessment.

To make use of the SLA Management on IT-1, you must install an agreement in the system. This agreement will be
detected by the GUI when creating a service instance and will be associated to it.

An agreement is represented by a simple JSON structure. Below is the default agreement that you should install. This
agreement will check that the service operations are executed in less than one second. Modify the constraint to allow
different time threshold.

"name": "«",
"details":{
"id": "2018-000234",
"type": "agreement",
"name": "x",
"provider": { "id": "mf2c", "name": "mF2C Platform" 1},
"client": { "id": "a-client", "name": "A client" 1},
"creation": "2018-01-16T17:09:45z",
"expiration": "2020-01-17T17:09:452z",
"guarantees": [
{
"name": "«",
"constraint": "[execution_time] < 1000"

To install the agreement, type the following command, where $CIMI_URL is the URL of the CIMI server in the leader
agent.

curl -X POST —-d @agreement.json —-H"Content-type:application/json" S$SCIMI_URL/api/
—agreement

Advance usage

The LifecycleManager is responsible, on a service instance creation, to generate an agreement and to start its assess-
ment. At the moment, the agreement generation is not available. For this reason, you must install an agreement as
explained above, which will be utilized when creating services using the GUL. If you plan to have different SLAs for
the different services, an agreement must be manually created on CIMI for each service instance that needs to have an
SLA. In this case, you must also modify the fields .name and .details.name of the agreement to match the name of an
installed service. Install as many agreements as service kinds you want to observe.

Currently, the assessment only is able to evaluate execution_time metrics, which are retrieved from the service-
operation-report resource. The Distributed Execution Runtime (DER) stores instances of this resource when com-
pleting an operation. Any non-DER service instance can store the appropriate service-operation-report to have its
agreement evaluated. For DER service instances, the guarantee name must match the operation names.

The steps to evaluate an agreement for a service instance are:

1. Create an sla-agreement CIMI resource using the excerpt above as template. Add as many guarantees as oper-
ations you need to observe, and set the guarantee name to the COMPSs name of the operation (qualified class
name ‘.’ method name). Take note of the agreement ID auto generated by CIML.

2.2. Installation 9

mF2C Documentation, Release 1.0 (2018-03-21)

2. Start the service instance through the Lifecycle Manager passing the agreement ID as parameter. The Lifecycle
Manager also starts the agreement assessment. Alternatively, you can manually update the agreement field of
an existing service instance and update the status field to “started” of the corresponding agreement resource.

3. Once the service is started, instances of the sla-violation resource are created if any guarantee term is not
fulfilled.

2.2.6 Check QoS provider

Before to check the QoS of a specific service, some previous steps are required.

1. Submit an Agreement:

cat >agreement. json <<EOF
{
"name": "AGREEMENT 1",
"state": "started",
"details": {
"id": "agreement",
"type": "agreement",
"name": "AGREEMENT 1",
"provider": { "id": "mf2c", "name": "mF2C Platform" },
"client": { "id": "c02", "name": "A client" 1},
"creation": "2018-01-16T17:09:45.01z",
"expiration": "2019-01-17T17:09:45.01z",
"guarantees": [
{
"name": "TestGuarantee",
"constraint": "execution_time < 10.0"

EOF
curl —-XPOST -k https://cimi/api/agreement -d @agreement.]json —-H "Content-type:
—application/Jjson" -H 'slipstream-authn-info: super ADMIN'

2. Submit a Service Instance specifying the <service-id> and the <agreement-id>:

cat >service-instance.json <<EOF

{

"service" : "service/<service-id>",
"status" : "not-defined",
"agreement" : "agreement/<agreement-id>",
"agents" : [{

"agent" : {

"href" : "agent/default-value"

b

"allow" : true,

"ports" : [46100, 46101, 46102, 46103 1,

"status" : "not-defined",

"agent_param" : "not-defined",

"url" : "192.168.252.41",

"container_id" : "-",

"master_compss" : true,

"num_cpus" : 7

Pl

(continues on next page)

10 Chapter 2. Developer Guide

mF2C Documentation, Release 1.0 (2018-03-21)

(continued from previous page)

"user" : "testuser"

EOF
curl —-XPOST -k https://cimi/api/service-instance -d @service-instance.json -H
—"Content-type: application/json" -H 'slipstream-authn-info: super ADMIN'

3. Submit a Service Operation Report specifying the <service-instance-id>:

cat >service-operation-report.json <<EOF

{

"servicelInstance": {"href": "service-instance/<service-instance-id>"},
"operation": "TestGuarantee",
"execution_time": 50.0
t
EOF

curl -XPOST -k https://cimi/api/service-operation-report -d @service-operation-—
—report.json -H "Content-type: application/json" -H 'slipstream-authn-info: super,
—ADMIN'

Finally, check the QoS of a service instance specifying the id:

curl —-XGET http://service-manager:46200/api/service-management/qgos/<service-instance-
—id>

As a result of the operation, the service instance will be returned.

2.3 Testing

2.3.1 Manual Testing

CIMI

(these instructions have not been tested in Windows)

CIMI will be running over HTTPS (through Traefik). Since this is a development and testing environment, we’ll use a
special CIMI HTTP header (slipstream-authn-info:internal ADMIN) to bypass user authentication and
authorization, by impersonating admin. Let’s also assume that the TLS certificates in-use were self-signed, thus we’ll
need —k. Finally, for creating and modifying resources, the expected payload is always JSON, so we’ll need the HTTP
header content-type:application/json).

For simplicity, let’s setup the 4 possible operations in CIMI:
CREATE

alias mf2c-curl-post="curl -XPOST -k -H 'slipstream-authn-info:internal ADMIN' -H
—'content-type:application/json' "

READ

alias mf2c-curl-get="curl -XGET -k -H 'slipstream—-authn-info:internal ADMIN' "

UPDATE

alias mf2c-curl-put="curl -XPUT -k -H 'slipstream-authn-info:internal ADMIN' -H
—'content-type:application/json' "

2.3. Testing 11

mF2C Documentation, Release 1.0 (2018-03-21)

DELETE

alias mf2c-curl-delete="curl -XDELETE -k -H 'slipstream—authn-info:internal ADMIN'

Let’s also assume the test CIMI server is running at localhost.

Cloud Entry Point

When CIMI is ready, the cloud-entry-point should be available:

mf2c-curl-read https://localhost/api/cloud-entry—-point

Adding a new user

If the SMTP configuration is enabled, you shall receive a user validation email (check the SPAM folder).

curl -XPOST -k —-H 'content-type:application/json' https://localhost/api/user -d '"'
{
"userTemplate”: {

"href": "user-template/self-registration",

"password": "testpassword",

"passwordRepeat" : "testpassword",

"emailAddress": "your_email@",

"username": "testuser"

}lll

Login

You must have validated the user before you can login. To login, simply create a session.

curl -XPOST -k -H 'content-type:application/json' https://localhost/api/session —--—
—cookie—jar ~/cookies -b ~/cookies -d ''"'
{
"sessionTemplate": {
"href": "session-template/internal",
"username": "testuser",
"password": "testpassword"

}ll!

Get a collection of any resources

To retrieve all the records of a certain resource type, simply do:

mf2c-curl-read https://localhost/api/<resourceName>

where resourceName is something like user, service, device, etc.

12 Chapter 2. Developer Guide

mF2C Documentation, Release 1.0 (2018-03-21)

Filter a collection of resources

To filter for a specific set of resources, use CIMI’s filtering grammar. Example:

mf2c-curl-read 'https://cimi/api/<resourceName>?S$filter=<AttrName>="<Value>"&S$filter=
—<AttrName2><=<Value2>&S$orderby=<AttrName3>:desc'

Get a specific resource

To get a specific resource, use its unique ID:

mf2c-curl-read https://localhost/api/<resourceName>/<uuid>

Create a new service

Example with only required fields:

mf2c-curl-post https://localhost/api/service -d '''
{

"name": "compss—hello-world",
"exec": "mf2c/compss-test:it2",
"exec_type": "compss",
"agent_type": "normal"

}lll

Example with all optional fields:

mf2c—curl-post https://localhost/api/service -d '"'
{

"name": "compss—-hello-world",
"description": "Hello World Service",
"exec": "mf2c/compss-test:it2",
"exec_type": "compss",
"exec_ports": [8080],
"agent_type": "normal",
"num_agents": 2,

"cpu_arch": "x86-64",

"os": "linux",

"memory_min": 1000,
"storage_min": 100,

"disk": 100,

"reqg_resource": ["Location"],
"opt_resource": ["SenseHat"]

}vlv

Create a service instance

mf2c—curl-post https://localhost/api/service—-instance -d "'’

{

"user": "testuser",
"device_id": "3dfe332d-dbd6-49c0-9788-56457a6d781b",

(continues on next page)

2.3. Testing 13

mF2C Documentation, Release 1.0 (2018-03-21)

(continued from previous page)

"device_ip": "192.169.1.41",
"parent_device_id": "11fe332d-dbd6-49c0-9788-56457a6d78cc",
"parent_device_ip": "192.169.252.42",
"service": "a5fe332d-dbd6-4ff0-9788-56457a6d7813",
"agreement": "15fe311d-dbd6-4£ff0-9711-56457a6d7819",
"status": "waiting",
"service_type": "swarm",
"agents": [
{"compss_app_1id": "523242342121", "url": "192.168.1.41", "ports":
—[8081], "container_id": "10asd673f", "status": "waiting",
"device_id": "3dfe332d-dbd6-49c0-9788-56457a6d781b", "allow":
—true, "master_compss": true, "app_type": "swarm"},
{"compss_app_id": "", "url": "192.168.1.42", "ports": [8081],
—"container_id": "99asd673f", "status": "waiting",
"device_id": "3dfe332d-d556-49c0-9788-56457a6d7889", "allow":
—true, "master_compss": false, "app_type": "swarm"}
]
}Vl'

Create a “sharing-model” record

mf2c-curl-post https://localhost/api/sharing-model -d ''"'
{
"user_id": "user/testuser2",
"device_id": "device/c749fcbb-651d-4ae6-877a-125e372398a4",
"gps_allowed": false,
"max_cpu_usage": 3,
"max_memory_usage": 3,
"max_storage_usage": 3,
"max_bandwidth_usage": 3,
"battery_limit": 50
}ll'

Create a user profile

mf2c—curl-post https://localhost/api/user-profile -d '"'
{
"user_id": "user/testuser2",
"device_1id": "device/c749fcbb-651d-4ae6-877a-125e372398a4",
"service_consumer": true,
"resource_contributor": true,
"max_apps": 1
proe

Create an service level agreement

mf2c-curl-post https://localhost/api/agreement -d '''
{

"id": "a02",

"name": "Agreement 02",

(continues on next page)

14 Chapter 2. Developer Guide

mF2C Documentation, Release 1.0 (2018-03-21)

(continued from previous page)

"state": "stopped",
"details":{
"id": "a02",
"type": "agreement",
"name": "Agreement 02",
"provider": { "id": "mf2c", "name": "mF2C Platform" },
"client"™: { "id": "c02", "name": "A client" 1},
"creation": "2018-01-16T17:09:45.0z",
"expiration": "2019-01-17T17:09:45.0z2",
"guarantees": [
{
"name": "TestGuarantee",
"constraint": "[test_value] < 10"

}lll

Create an SLA violation

mf2c-curl-post https://localhost/api/sla-violation -d """
{

"guarantee" : "TestGuarantee",

"datetime" : "2018-04-11T10:39:51.5270080882z",

"agreement_id" : {"href": "agreement/4e529393-f659-44d6-9c8b-b0589132599b"},
"constraint": "varl < 100 and var2 > 100",

"values": { "varl": 101, "var2": 100 }

}lll

Add a new device

mf2c—curl-post https://localhost/api/device -d ''"'
{

"deviceID":
—"fd97acd4cf865e108c143c57428f742022£38653f1f4c4166938a3154d7b5818967fd27daeb422a2bldal
‘—’"l

"isLeader": false,

"os": "Linux-4.15.0-45-generic-x86_64-with-debian-9.7",

"arch": "x86_64",

"cpuManufacturer": "Intel (R) Core(TM) i7-8550U CPU @ 1.80GHz",

"physicalCores": 4,

"logicalCores": 8,

"cpuClockSpeed": "1.8000 GHz",

"memory": 7873.7734375,
"storage": 195865.0234375,

"agentType": "Fog agent",
"networkingStandards": "['ethO', 'lo']",
"hwloc": "/bin/sh: 1: hwloc-1ls: not found\n",
"cpuinfo": "xml info CPU"

}vlv

2.3. Testing 15

eb8dc9d25£35¢

mF2C Documentation, Release 1.0 (2018-03-21)

Add the device-dynamic info

mf2c-curl-post https://localhost/api/device-dynamic -d '''
{

"device": {"href":
"ramFree": 3060.19140625,
"ramFreePercent": 38.9,
"storageFree": 168181.26171875,
"storageFreePercent": 90.5,
"cpuFreePercent": 79.5,
"powerRemainingStatus":
"powerRemainingStatusSeconds":

"39.74431818181818",

"powerPlugged": true,
"ethernetAddress": "[snicaddr (family=<AddressFamily.AF_INET:
—~0.14", netmask='255.255.0.0"', broadcast='172.18.255.255",

—snicaddr (family=<AddressFamily.AF_PACKET: 17>,

—netmask=None, broadcast='ff:ff:ff:ff:ff:£ff",
"wifiAddress": "Empty",
"ethernetThroughputInfo": ["13178", "8956", "18",
"wifiThroughputInfo": ["E", "p", "t", "y"I1,
"actuatorInfo": "Please check your actuator connection",
"sensors": [{"sensorType": "Temperature", "sensorModel":

—"sensorConnection": "{\"baudRate\": 5600}"}]

}vlv

ptp=None) 1",

neg" "
’
llmH,

"device/f14de9c3-9221-4£51-84bf-b3836bad601la"},

"BatteryTime.POWER_TIME_UNLIMITED",

2>, address='172.18.

ptp=None),
address='02:42:ac:12:00:0e",

O"’ llO"’ "Oll’ IIOII},

"DHT22",

Create a fog area

mf2c-curl-post https://localhost/api/fog-area -d '''
{

"leaderDevice": {"href": "device/123refegh"},
"numDevices": 10,
"ramTotal": 56789.90,
"ramMax": 4569.34,
"ramMin": 1478.34,
"storageTotal": 120003456798.2345¢6,
"storageMax": 345678000.23456,
"storageMin": 3456789.248,
"avgProcessingCapacityPercent":
"cpuMaxPercent": 98.2,
"cpuMinPercent": 56.7,
"avgPhysicalCores": 4,
"physicalCoresMax": 6,
"physicalCoresMin": 2,
"avgLogicalCores"
"logicalCoresMax":
"logicalCoresMin":
"powerRemainingMax":

88.6,

"Device has unlimited power source",
"powerRemainingMin": "88.2"

}vlv

16

Chapter 2. Developer Guide

mF2C Documentation, Release 1.0 (2018-03-21)

Add the service operation report

mf2c-curl-post https://localhost/api/service-operation-report -d '"'

{

"serviceInstance": {"href": "service-instance/asasdasd"},
"operation": "newMethod",
"execution_time": 123.32

}Yl‘

2.4 Credentials (API)

This section describes how to create new users, sessions, and API keys, all through the CIMI API.

Note: remeber to use -k in all API requests below, if you are working with a test deployment without a green server
certificate.

2.4.1 Create a user

Once the mF2C system is up and running,

1. create a new user by doing:

curl —-XPOST -H "Content-type: application/json" \
https://<server>/api/user -d RaddRegularUser. json

where addRegularUser.json is

{
"userTemplate": {
"href": "user-template/self-registration",
"password": "testpassword",
"passwordRepeat" : "testpassword",
"emailAddress": "your@email.com",
"username": "testuser"

2. check your email for a user validation email (if working with a test deployment of mF2C, check the Spam
folder). Once you find the email, copy the validation URL and paste it in the browser, looking like this
“https://<server>/api/callback/a3a9b6d9-5229-455a-b31b-87fa2b950159/execute”

3. once the user is validated, you can create a session and login:

curl -XPOST -H 'content-type: application/Jjson' \
https://<server>/api/session -d QregularUser.json \
—-—-cookie-jar ~/cookies -b ~/cookies -sS

where regularUser.json is

{
"sessionTemplate": ({
"href": "session-template/internal",
"username": "testuser",
"password": "testpassword"

(continues on next page)

2.4. Credentials (API) 17

mF2C Documentation, Release 1.0 (2018-03-21)

(continued from previous page)

note that ~/cookie expire by default after 1 day.

You are now logged in.

2.4.2 Generate an API key for a user
API keys are a safer way to have robots (scripts) interacting with the API on behalf of a user, since the same user can
issue multiple API keys, and every one of them can be revoked without interfering with the original user access.

Basically CIMI distinguishes between internal logins and api_key logins, even though they might be associated with
the same user account.

Before using API keys, create the session-template for it (only do it once, and if it doesn’t exist yet):

curl -XPOST -H content-type:application/json -d '
{

"method": "api-key",
"instance": "api-key",
"name" : "Login with API Key and Secret",
"description" : "Authentication with API Key and Secret",
"group" : "Login with API Key and Secret",
"key" : "key",
"secret" : "secret",
"acl": {
"owner": {"principal": "ADMIN",
"typell: IIROLE"}’
"rules": [{"principal": "ADMIN",
"type" : "ROLE" ,
"right": IIALL"},
{"principal": "ANON",
"type" : "ROLE" ,
"right": "VIEW"},
{"principal": "USER",
"type" : "ROLE" ,
"right": "VIEW" }]

}

}' https://<server>/api/session-template -H 'slipstream—authn-info: super ADMIN'

Then, to create an API key, do the following:

1. login (like demonstrated in step 3. of the previous section)

curl -XPOST -H 'content-type: application/json' \
https://<server>/api/session -d QregularUser.json \
——cookie-jar ~/cookies -b ~/cookies -sS

2. generate an API key and secret

curl -XPOST -H 'content-type: application/json' \
https://localhost/api/credential -d @generateAPIKey.json \
--cookie-jar ~/cookies -b ~/cookies -sS

18 Chapter 2. Developer Guide

mF2C Documentation, Release 1.0 (2018-03-21)

where generateAPIKey.json is something like

{

"credentialTemplate": {
"href": "credential-template/generate-api-key",
"ttl": 0O

3. you’ll get a server response similar to

"status" : 201,

"message" : "credential/4f8b8f66-2e15-4570-alde-£9d3582425ad created",
"resource-id" : "credential/4f8b8f66-2e15-4570-alde-£f9d3582425ad",
"secretKey" : "nehrHa.V9Ppzb.vHf4BG.5vxv3j.DzLtgb"

4. save the “resource-id” and “secretKey”

export CIMI_API_KEY=credential/4f8b8f66-2e15-4570-alde-f9d3582425ad
export CIMI API SECRET=nehrHa.V9Ppzb.vHf4BG.5vxv3j.DzLtgb

5. create another session login, with regularUserAPIKey.json:

cat >regularUserAPIKey.json <<EOF
{
"sessionTemplate": {
"href": "session-template/api-key",
"key": "SCIMI_API_KEY",
"secret": "S$CIMI_API_SECRET"

}
EOF

curl -XPOST -H 'content-type: application/json' \
https://<server>/api/session -d @regularUserAPIKey. json \
—-—-cookie-jar ~/cookies -b ~/cookies -sS

And now you are logged in using an API key and secret instead of your internal user credentials.

2.4. Credentials (API)

19

	Introduction
	mF2C

	Developer Guide
	Cloud Agent
	Installation
	Testing
	Credentials (API)

